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Introduction and overview

Potential energy surfaces for atomistic dynamics

N atoms; classical nuclei, positions x(i), 1 ≤ i ≤ N.

Interaction potential V (X ) (X ∈ R3N). Force F = −∇V and then
“F=ma” dynamics.

Electron dynamics is gone. This is the Born-Oppenheimer
(adiabatic) approximation.

Also of interest, the dipole moment surface (DMS) d(X ),
quadrupole moment surface, polarizability and other properties.

Fundamentally V (X ), d(X ), etc., are obtained by expensive
electronic structure calculations. We are concerned here with fitted
surfaces that are cheap to evaluate.

Local representation: V =
∑

i V0(X (i)) where X (i) are collective
nuclear coordinates for an environment of the i-th atom.
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Other uses of potential energy surfaces

Born-Oppenheimer approximation allows quantum nuclei; it is not
limited to semiclassical molecular dynamics.

Molecular spectroscopy: Eigenvalue problem HΨ = EΨ for the
nuclear wavefunction. Tractable for small molecules.

Diffusion Monte Carlo for sampling the ground state nuclear
wavefunction: Random walk with birth and death processes.

Quantum statistics: < A >β= 1
Z(β)tr(Ae

−βH). Thermal averages
calculated using Path Integral Monte Carlo.

Ring Polymer Molecular Dynamics and variants; PIMC plus time
evolution. Model for nuclear quantum effects.

Quantum scattering: i~ ∂
∂t Ψ(X , t) = HΨ(X , t). Application to

reaction dynamics is pretty much limited to 4-atom systems.
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Three-dimensional image processing

Three-dimensional (3D) objects can be represented by a voxel
image; the direct analog of a two-dimensional pixel image.

In many cases it suffices to characterize only the surface of the 3D
object. Then a voxel image is very inefficient.

Consider a 3D object represented by its surface, and the surface
represented by a cloud of points.

Each point may carry some properties: material, colour, ... .

Want to learn properties of the 3D object.

Similarities to atomistic modelling: input data based on points in
R3; desired invariance under translation and rotation.

Different from atomistic modelling: no significant pairwise
interaction; no invariance under inversion.
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Invariants, covariants, equivariants

Vector spaces U and V , group G with representations on U and
V . For g ∈ G we write gU .u or gV .v for the action of g on a
typical element u ∈ U or v ∈ V .

Function f : U → V is covariant (equivariant) if for all g ∈ G and
u ∈ U, f (gU .u) = gV .f (u).

(Invariants are the special case gV .v ≡ v .)

Example, the dipole moment d(X ), X ∈ R3N . Invariant under
Sym(N), covariant under O(3).

Represent it by effective charge model: d(X ) =
∑

i wi (X )ri ; then
the weight vector w ∈ RN is covariant under Sym(N) and
invariant under O(3).
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Fitting or learning in the presence of symmetries

Example: Want to fit or learn f : RN → R, f (x) = z , using data
f (Xα) = zα. Typical point x = (x1, ..., xN). Say that the
underlying true function is totally symmetric in the (xi )i . Options:

(a) Ignore the symmetry, use any plausible model. (Maybe
replicate the data using symmetry.) Obtain symmetry via accuracy.

(b) Use explicit invariants of a good functional form. Example:
yk = pk(x) (where the pk are elementary symmetric polynomials
for 1 ≤ k ≤ N), then f (x) = g(y(x)) with some plausible model
for g . Efficient; technically difficult for more complicated
symmetries. (Braams+Bowman at Emory University.)

(c) Use explicit invariants of an easily generalizable form. Example:
y = Sort(x), then f (x) = g(y(x)). Introduces nonsmoothness,
often discontinuities. Obtain smoothness via accuracy.
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New approaches from Big Data and Machine Learning

Machine Learning has brought specific methods, e.g. deep
convolutional neural networks (Vision, Go).

Machine Learning is also bringing a change of attitude...

Nothing wrong with optimizing over very many variables
(Stochastic Gradient Descent).

Nothing wrong with lots of local minima, even inequivalent ones.
Don’t ask for a guaranteed global optimum.

(NN with 20 layers and 256 nodes per layer and a ReLU
nonlinearity has multiplicity of about 1010139, being (256!)20; with
tanh nonlinearity about 1011680, being (2256 × 256!)20.)
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New approaches from big data and machine learning

Review of problem statement; focus of remaining talk

Atomistic modelling: Fit or learn an energy, force field or other
properties as a function of atomic positions and atom types.

Three-dimensional image processing: Fit or learn properties of an
object as a function of coordinates of a cloud of points (and
associated properties) on the surface of the object.

The atomistic problem has a long history of empirical, physically
motivated force fields (CHARMM, AMBER, GROMOS, Tersoff
potentials, EAM approach, ReaxFF).

We are concerned with recent “big data” approaches of two kinds.

* Richly parameterized linear models; big data linear regression.

* Deep neural networks.
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New approaches from big data and machine learning

Big data approaches based finally on linear regression

(More details in supplementary slides.)

Gaussian Approximation Potential (GAP), Smooth Overlap of
Atomic Potentials (SOAP) kernel. Key reference: Bartók, Kondor,
Csányi (2013) Phys Rev B 87.

Spherical Wavelet Expansion approach. Key references:
Eickenberg, Exarchakis, Him, Mallat, Thiry (2018) J Chem Phys
148; Brumwell, Sinz, Kim, Qi, Hirn (2018) arXiv:1812.02320.

Spectral Neighbor Analysis Potential (SNAP). Key references:
Thompson, Swiler, Trott, Foiles, Tucker (2015) J Comput Phys
285; Wood, Thompson (2018) J Chem Phys 148.

Atomic cluster expansion. Key reference: Drautz (2019) Phys Rev
B 99.
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Behler-Parrinello High-Dimensional Neural Network
Potentials (HDNNP)

Key references: Behler, Parrinello (2007) Phys Rev Lett 98; also
Behler (2017) Angew Chem Int Ed 56.

Ansatz V =
∑

i V
(ai )(Xi ) where ai denotes the atom type of the

i-th atom and Xi are the collective nuclear coordinates for a local
environment of the i-th atom.

Input layer for the neural network are symmetry functions of the
local environment; invariant wrt rotation and permutation. Radial
(two-body) and angular (three-body) functions.

Finally a feed-forward neural network with some activation
function φ; inter-layer mapping: v (l) = φ(W l

l−1.v
(l−1) + d l).

Weights W and displacements d to be learned.
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SchNet, Deep Tensor network from TU Berlin

Key reference: Schütt, Sauceda, Kindermans, Tkatchenko, Müller
(2018) J Chem Phys 148. Also Nature (2017).

Say N atoms. Each NN layer contains atomic feature vectors xi for
each atom (1 ≤ i ≤ N); positions are global parameters.

Transitions between layers, l − 1→ l (before the nonlinearity):

Dense atom-wise, x li = W l
l−1.x

l−1
i + d l ;

Convolution feature-wise: x li = (X l−1 ?W ′l
l−1)i . Convolutions

depend on relative distances.

Smooth shifted SoftPlus instead of ReLU.

Weights to be fitted as functions of relative positions.
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New approaches from big data and machine learning

DeepMD approach led by E and Car, Princeton Univ.

Key reference: Zhang, Han, Wang, Car, E (2018) PRL 120.

Recall V =
∑

i V
(ai )(Xi ) where ai is the atom type and Xi are the

collective nuclear coordinates for a local environment of the i-th
atom.

Local environment is rotated in a problem-dependent manner. Let
j enumerate neighbouring atoms within a cut-off distance.

Environment descriptor D(Xi ) = Sort{Dij} sorted by chemical
species and by distance Rij .

Dij = (1/Rij , xij/R
2
ij , yij/R

2
ij , zij/R

2
ij )

Obtain V (a) as output of a deep neural network with inputs the
ordered (Dij)j .
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New approaches from big data and machine learning

DeepPot-SE, Deep Potential Smooth Edition, from
Princeton University and IAPCM

Key reference: Zhang, Han, Wang, Saidi, Car, E (2018) NIPS.

Follow-on to the DeepMD work, but now with due respect for
continuity, energy conservation and vector covariance.

Environment descriptors without rotation or sort:
Dij = sij(rij)× (1, xij , yij , zij); sij → 0 for large rij .

Two-stage NN: an encoding network and a fitting network.

Encoding network maps local environment to a feature space
preserving point group and permutation symmetry.

Fitting network is fully connected feed-forward neural network with
skip connections.
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Related developments in Machine Learning

Perspective from Machine Learning .. Intro

Basic feed-forward neural network: v l = φ(W l
l−1.v

(l−1) + d l).

v ∈ Rb; φ e.g. pointwise ReLU or a smooth variant; weights W
and displacements d to be learned.

Structured network: v ∈ X b, X ∼ Rk with some structure. W has
a corresponding structure.

Example (Convolutional Neural Network, CNN): X ∼ Rm×n,
pixelized greyscale image. Elements of W are convolutions with
compact kernel.

Parameterized network: Data depend on parameters p, weights to
be learned as a function of p. (Linear regression formulation.)
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Related developments in Machine Learning

Point Cloud Convolutional Networks

Permutation equivariant neural networks (“Deep Sets”): Zaheer,
Kottur, Ravanbhakhsh et al., NIPS 2017.

Structured and parameterized: X ∼ RN , v ∈ RN×b; interpret as
feature vector of size b with components in RN associated with N
points in R3. Parameters p: positions ri (1 ≤ i ≤ N). Weights W
represent local convolutions; depend on local distances.

Point cloud convolutional networks are covariant (equivariant)
under Sym(N).

See also: [SpiderCNN convolutional filters on point sets: Xu, Fan,
Xu, Zeng, Qiao, Proc ECCV 2018], [PointConv deep convolutions
on point sets: Wu, Qi, Fuxin, Arxiv 2018], other work on
permutation equivariant NN.
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Related developments in Machine Learning

Point Clouds with Additional Structure
Basic point cloud network has v ∈ RN×b; feature vector of size b
with components in RN . Group is Sym(N); feature vectors are
otherwise unstructured. Imagine additional structure in the feature
vector.

Additional group G of transformations on v , especially
permutation group or SO(3); parameters and feature vector have
definite transformation properties under G .

Group-Equivariant CNN: Cohen and Welling, ICML 2016.

Spherical Convolutional Neural Networks: Cohen, Geiger, Köhler,
Welling, ICLR 2018.

Tensor Field Networks: Thomas, Schmidt, Kearnes et al., Arxiv,
2018.

Gauge Equivariant CNN: Cohen, Weiler, Kicanaoglu, Welling,
Arxiv, 2019.
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Related developments in Machine Learning

Conclusions

There are promising new approaches to force fields with inspiration
from big data and machine learning. (No assessment here of
relative merits.)

There are valuable related developments from machine learning
community inspired at least in part by application to atomistic
force fields.

BJB wish list for developments and future work ...

Simultaneous learning of energy, dipole, quadrupole moment
through local charges with long-range interactions.

Fit or learn bands in solids invariant under SL(3,Z).

Learn local effective Hamiltonians for excited states.

More studies genuinely focussed on applications.
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Other uses of potential energy surfaces

Supplementary slides.



Machine learning of equivariant functions inspired by atomistic modelling and three-dimensional image processing

Supplement: Other uses of potential energy surfaces

Molecular spectroscopy

Eigenvalue problem HΨ = EΨ:

−
∑
i

~2

2mi
∆iΨ(X ) + V (X )Ψ(X ) = EΨ(X )

Configuration interaction approach (Hartree products):

Ψ(X ) =
∑
α

cαΨα(X )

Ψα(X ) = Πiψ
(i)
α(i)(x(i))

This provides the ro-vibrational spectrum. Tractable for small
molecules: e.g. 2(H2O), CH3OH; up to 9 atoms in our work.
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Diffusion Monte Carlo

Ground state wavefunction: HΨ = E0Ψ.

−
∑
i

~2

2mi
∆iΨ(X ) + V (X )Ψ(X ) = E0Ψ(X )

Steady state for reaction-diffusion equation:

∂Ψ

∂t
−

∑
i

~2

2mi
∆iΨ(X ) + V (X )Ψ(X ) = E0Ψ(X )

Can be solved in many dimensions using random walk with birth
and death processes.

Result is ground state energy E0; plus sample from the ground
state wavefunction. (Sample |Ψ2| via descendant weighting.)



Machine learning of equivariant functions inspired by atomistic modelling and three-dimensional image processing

Supplement: Other uses of potential energy surfaces

Quantum statistics

Partition function Z (β) = tr(e−βH). Thermal averages:

< A >β=
1

Z (β)
tr(Ae−βH)

Use e−βH = (e−(β/n)H)n; H = T + V ; n→∞. Let βn = β/n,
ωn = 1/βn~;

Vn(X) =
∑
i

(V (Xi ) +
1

2
mω2

n(Xi+1 − Xi )
2)

Zn(βn) =

∫
e−βnVn(X)dx

Path Integral Monte Carlo.
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Ring Polymer Molecular Dynamics

Due to David Manolopoulos (Oxford). PIMC plus time evolution.
Classical hamiltonian:

Hn(x , p) = Vn(x) +
∑
i

p2
i

2m

dx

dt
=
∂Hn

∂p
,

dp

dt
= −∂Hn

∂x

Seen as a model for calculating the quantum Kubo correlation
function.

c̃A,B(t) =
1

βZ (β)

∫ β

0
tr(e−(β−λ)HA(0)e−λHB(t))dλ
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Quantum scattering

Time-dependent Schrödinger equation:

i~
∂

∂t
Ψ(X , t) = HΨ(X , t)

Wavepacket propagation in an unbounded domain. Application to
reaction dynamics is pretty much limited to 4-atom systems.
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Big data approaches based finally on linear regression

Supplementary slides.
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GAP-SOAP approach of G. Csányi, B. Bartók et al.

Key reference: Bartók, Kondor, Csányi (2013) Phys Rev B 87.

Gaussian Approximation Potential (GAP), also referred to as
Kernel Ridge Regression, high-dimensional version of Radial Basis
Functions. Authors use both language of Machine Learning and
language of function fitting, regression analysis.
f (X ) =

∑
α wαK (X ,Xα).

Smooth Overlap of Atomic Potentials (SOAP) kernel K (X ,X ′).

X 7→ ρ, S(ρ, ρ′) =
∫
ρ(r)ρ′(r)dr .

K (X ,X ′) =
∫
|S(ρ,R.ρ′)|n dR, R ∈ O(3).

Integrals evaluated via spherical harmonic expansion.
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Spherical Wavelet Expansion approach led by S. Mallat

Key references: Eickenberg, Exarchakis, Him, Mallat, Thiry (2018)
J Chem Phys 148; Brumwell, Sinz, Kim, Qi, Hirn (2018)
arXiv:1812.02320.

General with respect to chemical elements.

Global transform, no explicit reference to local environments.

Smoothed densities ρ(r) =
∑

i nig(r − ri ), smooth kernel g ;
separate densities for core and valence electrons.

Solid harmonic wavelet basis functions (Brumwell et al.): ψm
γ,l ,j ;

convolutions with densities ρ.

Now symmetrize with respect to rotations and translations ...

Finally multilinear regression.
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Spectral Neighbor Analysis Potential (SNAP)

Key references: Thompson, Swiler, Trott, Foiles, Tucker (2015) J
Comput Phys 285; Wood, Thompson (2018) J Chem Phys 148.

Local environment of atom i , expansion into hyperspherical
harmonics, expansion coefficients ujm,m′ .

Bispectrum components are defined that are real-valued and
invariant under 3D rotation: triple products Bj1,j2,j of the ujm,m′ . (It
involves a hyperspherical version of Clebsch-Gordon coefficients.)

Finally local energy Ei is expressed as a linear (Thompson et al,
2015) or quadratic (Wood and Thompson, 2018) function of the
bispectrum components Bj1,j2,j . (Linear regression either way.)
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Atomic cluster expansion by R. Drautz, Bochum

Key reference: Drautz (2019) Phys Rev B 99.

Local environment of atom i , descriptors Aiv =
∑

j φv (~rji ), where
the φv are a family of basis functions: v = (nlm) and then

φv (~r) =
√

4πRnl(‖~r‖)Ym
l (~r/‖~r‖).

Cluster products involving Clebsch-Gordon coefficients

B
(K)

i ,~n,~l
=

∑
~m

CG(~l , ~m)× Ai ,n1,l1,m1 · · ·Ai ,nK ,lK ,mK
.

Finally Ei =
∑

K ,~n,~l
c

(K)

~n,~l
B

(K)

i ,~n,~l
.

Drautz (2019) also describes a nonlinear version to overcome slow
convergence of the cluster expansion.
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Problems with potentials for materials and PMI

Supplementary slides.
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Hydrogen retention in irradiated tungsten

IAEA Coordinated Research Project (CRP) on Plasma-wall
interaction with irradiated tungsten and tungsten alloys in fusion
devices (2013-2018). See https://www-amdis.iaea.org/CRP/.

Need to understand effect of radiation om microstructure and
effect of microstructure on hydrogen retention and migration.

Must use surrogate irradiation; need modelling to interpret
experimental data.

Most basic computations: primary radiation damage and hydrogen
migration.

Relatively short timescale. (Long timescale: segregation,
corrosion.) Molecular dynamics is the main tool.
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Problems with potentials for tungsten

Talk by A. Sand (Helsinki, with Kai Nordlund) at IAEA,
2017-11-16: “Energetic cascades in tungsten: sensitivity to
interatomic potentials and electronic effects.”

“Potentials with largely similar point defect formation and
migration energies disagree regarding clustered fraction of defects
for high PKA energies. Some potentials predict only very small
clusters, others show formation of clusters of > 100 point defects.”

“Why the different predictions, despite extensively fitted ’good’
potentials??”

Discuss blending to short-range Ziegler-Biersack-Littmark (ZBL)
potential.

Many-body effects beyond embedded atom (EAM) approach.
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Vacancy Clustered Fraction
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Self-Interstitial Atom Clustered Fraction
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Average Number Frenkel Pairs per Cascade
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Force fields for fusion materials and plasma-material
interaction

The potential is (almost) everything; and that needs to be
reflected in the effort.

Keep in mind the following target application: Primary radiation
damage in W-H-He. PKA event, melt region, resolidification. More
difficult than pure W (see above); not as difficult as steel.

Quantum effects on the nuclear motion: barely ever relevant.

Electronic excitation beyond simple stopping: can be important,
could be taken into account. (Langevin approach, potential
depends on electron temperature.)
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